Abstract
The monotonic tensile and creep deformations of a directionally solidified (DS) superalloy are investigated for several loading directions. The material exhibits remarkable anisotropy under elastic and creep loading conditions, whereas it shows isotropy under loading conditions of high strain rates. Tension-torsion creep tests are also conducted to investigate the deformation under multiaxial stress conditions. Referring to the observed behavior, a unified constitutive model, which has two features, is developed for the DS superalloy. One is a static recovery term of back stresses that is prescribed as a transversely isotropic property, which is supposed to have an effect on the deformation behavior under creep loading conditions. The other is the division of inelastic strain into two components, which represent octahedral and cubic slip system deformations, so as to describe multiaxial creep deformation. Calculation results obtained using the constitutive model are compared with the uniaxial and multiaxial experimental results to evaluate the validity of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.