Abstract

The chemical composition of water-soluble organic carbon (WSOC) in atmospheric aerosol particles is largely unexplored, due to the myriad of individual compounds, which has hampered attempts to attain a full characterization at the molecular level. An alternative approach, focusing on the analysis of a few main chemical classes, allowed the quantitative fractionation of WSOC into neutral compounds (NC), mono- and di-acids (MDA) and polyacids (PA) through an anion-exchange liquid chromatographic method. Previous attempts to quantify NC, MDA and PA relied on a low-pressure chromatographic technique using a volatile buffer, followed by total organic carbon (TOC) analysis of the fractions, or alternatively on a faster HPLC-UV method which provided a quantification of the fractions based on empirical relationships between UV signal and TOC concentration. Here, we report an upgraded anion-exchange HPLC technique, allowing direct TOC analysis of the eluted fractions, without any pre-treatment, thus permitting a great simplification of quantitative analysis and preventing sample losses. The new HPLC-TOC methodology, employing completely inorganic eluents shows the same efficiency of the former HPLC-UV method employing organic additives, with the exception of phenolic compounds, which are retained on the column by secondary interactions, and low-molecular weight tricarboxylic acids, which are recovered among MDA. The new anion-exchange liquid chromatographic method can recover a substantial amount (86–100%) of water-soluble organic carbon from atmospheric aerosol extracts, thus allowing a higher retention and fractionation capacity with respect to alternative techniques, like solid phase extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.