Abstract
The Quality of Service (QoS) of Universal Mobile Telecommunication System (UMTS) is severely affected by the losses occurring in Radio Link Control (RLC) due to high error probability. Therefore, for any video quality prediction model, it is important to model the radio-link loss behaviour appropriately. In addition, video content has an impact on video quality under same network conditions. The aim of this paper is to present video quality prediction models for objective, non-intrusive prediction of H.264 encoded video for all content types combining parameters both in the physical and application layer over UMTS networks. In order to characterize the QoS level, a learning model based on Adaptive Neural Fuzzy Inference System (ANFIS) is proposed to predict the video quality in terms of the Mean Opinion Score (MOS). ANFIS is well suited for video quality prediction over error prone and bandwidth restricted UMTS as it combines the advantages of neural networks and fuzzy systems. The loss models considered are 2-state Markov models with variable Mean Burst Lengths (MBLs) depicting the various UMTS scenarios. The proposed model is trained with a combination of physical and application layer parameters and validated with unseen dataset. Preliminary results show that good prediction accuracy was obtained from the model. The work should help in the development of a reference-free video prediction model and Quality of Service (QoS) control methods for video over UMTS networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.