Abstract
As the number of cases of damage caused by malicious apps increases, accurate detection is required through various detection conditions, not just detection using simple techniques. In this paper, we propose a knowledge-based machine learning method using authority information and adding its usage counting features. This method is classifying training apps and malicious apps through machine learning using permission features in manifest.xml of Android apps. As a result of the experiment, accuracy, recall, precision, F1 score are 99.01%, 97.70%, 100.0%, 99.01%, respectively. Since Recall is higher than other indicators, it accurately predicts malicious apps as malicious. In other words, the proposed system is effective in preventing the distribution of malicious apps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOIV : International Journal on Informatics Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.