Abstract

Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.

Highlights

  • Paleontology, and molecular biology to infer the genetic control of the first dentition

  • We identify Hox genes as important components of an ancient dental generegulatory circuit and pinpoint subsequent modifications to this gene network that accompanied the evolution of toothed oral jaws

  • We estimated the number of teeth on both oral and pharyngeal jaws of adult fishes for a range of Malawi cichlid species spanning the major evolutionary lineages and the extremes of dental diversity (Figure 2)

Read more

Summary

Introduction

Tooth-like structures located on elements of the pharyngeal series or skeleton were present in extinct jawless fishes (agnathans), for example members of the conodonts and later the thelodonts, which both possessed intricate, well-organized replacing dental systems [1,2,3,4]. Tooth-like elements (denticles) were present on the dermal surface of some agnathans (including thelodonts) and chondrichthyans, it was the occurrence of uniquely patterned pharyngeal teeth in agnathans that likely foreshadowed all other vertebrate oropharyngeal teeth [1,3,4,5]. Some extant fish still retain this ancient population of teeth in the posterior pharyngeal skeleton. More advanced groups of teleosts have adapted their posterior pharyngeal skeleton with teeth housed in discrete functional jaws, as in the cichlids and other groups [6,7,8,9,10,11,12,13,14] (Figure 1)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.