Abstract

ABSTRACT We present an analytical theory for the resolution attainable via eclipse mapping of exoplanets, based on the Fourier components of the brightness distribution on the planetary disc. We find that the impact parameter determines which features can and cannot be seen, via the angle of the stellar edge relative to the axis of the orbit during the eclipse. We estimate the signal-to-noise ratio as a function of mapping resolution, and use this to determine the attainable resolution for a given star–planet system. We test this theory against numerical simulations and find good agreement; in particular, our predictions for the resolution as a function of stellar edge angle are accurate to the simulated data to within 10 per cent over a wide range of angles. Our prediction for the number of spatial modes that can be constrained given a light-curve error is similarly accurate. Finally, we give a list of exoplanets with the best expected resolution for observations with the NIRISS SOSS, NIRSpec G395H, and MIRI LRS instruments on JWST.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call