Abstract
Summary Optimizing the completion interval to minimize water coning has been long recognized as a challenge in the industry. After reviewing the mechanism of water coning, a simple analytical model is presented in this study for water-coning systems in high-conductivity reservoirs (reservoirs with low pressure gradient). This model is applicable to predict the critical rate and to determine the optimum wellbore penetration for achieving maximum water-free production rate of vertical oil wells. The developed model predicts the critical rate on the basis of a radial/spherical/combined (RSC) 3D flow field assumption that takes into account the effect of permeability anisotropy, density difference between water and oil, and limited wellbore penetration. Moreover, optimum wellbore penetration into the oil zone has been determined by maximizing the critical rate. This analytical model reveals the optimum wellbore penetration in high-conductivity reservoirs to be almost half of the pay-zone thickness, depending on the radius of wellbore and drainage area, pay-zone thickness, and the permeability anisotropy of the reservoir.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have