Abstract
In this paper, the thermal stresses of a thin functionally graded material (FGM) cylindrical shell subjected to a thermal shock are studied. An analytical method is developed. The studied problem for an FGM cylindrical shell is reduced to a plane problem. A perturbation method is used to solve the thermal diffusion equation for FGMs with general thermal properties. Then, the transient thermal stresses are obtained. The results show that the thermal shock is much easier to result in failure than the steady thermal loading. The present method can also be used to solve the crack problem of an FGM cylindrical shell with general thermal properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have