Abstract
Background: A novel Dual Material Gate Graded Channel and Dual Oxide Thickness Cylindrical Gate (DMG-GC-DOT) MOSFET is presented in this paper. Methods: Analytical model of drain current is developed using a quasi-two-dimensional cylindrical form of the Poisson equation and is expressed as a function of the surface potential, which is calculated using the expressions of the current density. Results: Comparison of the analytical results with 3D numerical simulations using Silvaco Atlas - TCAD software presents a good agreement from subthreshold to strong inversion regime and for different bias voltages. Conclusion: Two oxide thicknesses with different permittivity can effectively improve the subthreshold current of DMG-GC-DOT MOSFET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.