Abstract

An analytic three-terminal band-to-band tunneling current model for the gate-induced drain leakage current (GIDL) in an n-MOSFET is developed. This model considers impurity doping concentration, vertical field, lateral field, and so-induced electron momentum enhancement, as well as the surface electro-static potential in the gate-to-drain overlapped region. Based on a constant surface-potential approximation, a closed-form equation has been obtained instead of the complex integral-form in previous works. The results from this new model show good agreement with the measurement data over a wide range of gate and drain biases and device channel lengths. This work is useful for GIDL analysis in transistor design as well as in circuit simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call