Abstract

Surface waves are extremely important in a large variety of oceanographic applications and thus, the study of their spatiotemporal characteristics remains crucial. This study analyzes waves in the Caribbean Sea (CS) and western Atlantic Ocean (AO) using a high-resolution (HR) Simulating WAves Nearshore model validated with buoy observations and paired with a HR bathymetric dataset from 2010 – 2019. Island sheltering effects are examined but special attention is given to these effects under Hurricane Dorian in The Bahamas using observations from the China-France Oceanographic Satellite. Results illustrate that wave heights within the CS fluctuated with Caribbean Low-Level Jet activity, but a different wave regime exists within the AO. While wind waves overwhelmingly dominate the wave field and this is true even in the AO, surprisingly, the contribution of swell in the central CS was equal to one site in the AO. Possibly, due to interaction with the shallow Nicaraguan Rise, wave heights were strongly (depth-induced) refracted nearly 45°, a feature unseen in previous research using coarse bathymetric datasets. Island sheltering effects were pervasive and were naturally most pronounced under hurricane conditions. Crucially, New Providence in The Bahamas is vulnerable to hurricane-forced waves funneled through the Grand Bahama and Northeastern Providence Channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call