Abstract

This research evaluates the performance of CAS-LICOM3 (Chinese Academy of Science, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP) Climate system Ocean Model, version 3) in simulating global coherent mesoscale eddies by comparison to satellite altimeter observations. The simulations of westward and eastward propagating eddies (WPEs and EPEs) and cyclonic and anticyclonic eddies (CEs and AEs) are separately analyzed. The results demonstrate that the simulated spatial-temporal variabilities in global mesoscale eddies agree roughly with the satellite observations. CAS-LICOM3 also reproduces the distinctive features between WPEs and EPEs or between CEs and AEs. However, some systematic biases are found. Globally, CAS-LICOM3 simulates a less frequent and weaker mesoscale eddy field than is observed. WPEs contribute more to these global biases than do EPEs. EPEs are relatively better reproduced than WPEs, exhibiting smaller underestimations and even overestimations in the energetic western boundary current and Antarctic circumpolar current regions. The simulation results for CEs resemble those of AEs, but AEs are comparatively less biased than CEs. These findings provide a basis for improving low-resolution and eddy-resolving ocean general circulation models (OGCMs) and developing submesoscale-resolving OGCMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call