Abstract
The large amount of opinionated data made available by social networks allows the extraction of valuable information for a variety of applications. Sentiment analysis is a powerful tool in this sense, allowing to identify and classify opinions in texts according to the predominant polarity exposed in them. An interesting use of this technique is for companies to rank the messages from their clients in order to identify and attend the most dissatisfied ones first, thus improving customer service. In this work, we evaluate the application of a range of different machine learning techniques (including two deep learning ones) to the sentiment analysis of tweets in Brazilian Portuguese, aiming customer service prioritization. Our results show that the deep learning models are able to classify tweets more efficiently in this context, compared to traditional machine learning ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.