Abstract
Food is one of the essential things in society. Foodstuffs prices are important factors in the stability economy. In Indonesian society, some foodstuffs, e.g., rice, beef, chicken egg, cooking oil, and sugar are the main ingredients in their cuisine. Analyzing and predicting the foodstuffs price is interesting job. This research is conducted to develop models for forecasting the price of rice, beef, chicken egg, cooking oil, and sugar. It implements the Long Short-Term Memory (LSTM) model and a daily time-series dataset from a traditional market in Surabaya. Surabaya is the capital city of East Java province, and it is one of the densest cities in Indonesia. The experiments run univariate time-series forecasting. The experimental results show that LSTM works well to forecast the price of rice, beef, chicken egg, cooking oil, and sugar. The evaluation results obtain MAPE scores as 0.12%, 0.03%, 0.72%, 0.36%, and 0.08% for models of rice, beef, chicken egg, cooking oil, and sugar, respectively. The annual average price of beef, chicken egg, and cooking oil show an increasing trend and those foodstuffs have positive correlations with each other.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have