Abstract

A snapback repeller of an analytic mapping is defined as a full orbit which tends to an unstable fixed point backwards in time and snaps back to the same fixed point. This note gives a rather elementary proof that unstable periodic orbits accumulate near snapback repellers. The proof is entirely selfcontained and uses only standard elementary tools. We exploit that the global semiconjugacy of the entire analytic map to a linear map is itself an entire analytic function and apply the Theorem of Rouche to its zeros. We also generalize Marotto's result about the chaotic motion near a snapback repeller to include the degenerate case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.