Abstract

A theorem of Poincare guarantees existence of the local conjugacy of an entire analytic mapping with an hyperbolically unstable fixed point to the linearized mapping. Since the local conjugacy can be extended to a global conjugacy, it is a valuable tool for the global study of dynamics. Especially we focus on snapback repellers which are defined as entire orbits which tend to an unstable fixed point in the past and snap back to the same fixed point. Snapback repellers correspond to the zeros of the semiconjugacy. It turns out that in general there exist infinitely many snapback points and for each one of them there exist infinitely many snapback repellers. The exceptional classes of functions with a different behavior are characterized. The proof exploits the Theorem of Picard about the range of values that an analytic function assumes near an essential singularity. Furtheron, we related the multiplicity of the zeros of the semiconjugacy to the occurrence of critical points in the corresponding snapback repeller. For quadratic mappings and their iterates, the zeros of the semiconjugacy have at most multiplicity two.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.