Abstract

The Henties Bay Outjo dyke swarm (HOD) in NW Namibia is part of the early Cretaceous Paraná-Etendeka Large Igneous Province. The dykes are dominantly doleritic, compositionally equivalent to the erupted lava series and thus the HOD provides a look at the feeder systems of a flood basalt province. The subvertical dykes mostly strike NE-SW and minor NW-SE, parallel or perpendicular to the Damara Belt in which they intruded. We present a magnetic fabric study using the anisotropies of low-field magnetic susceptibility (AMS) and of anhysteretic remanent magnetization (AARM) with the aim to derive magma flow directions and better constrain emplacement mechanisms within the dyke swarm.Magnetic susceptibility and its anisotropy in the dykes is mainly controlled by distribution anisotropy of titanomagnetite that mimics the flow-oriented silicate fabric. The anisotropy is low in most samples, supporting a magmatic origin. In 66 of 110 investigated samples the AMS fabric is “normal”, with the κmax axis (inferred flow orientation) within the dyke plane. Most samples yielded vertical to subvertical flow orientations regardless of location near or distant from the former rifted margin. The “anomalous” magnetic fabrics, where κmax is inclined to the dyke plane, are attributed to two mechanisms. One is the single-domain effect of titanomagnetite, which was found by unequal orientations of AMS and AARM fabrics.The other case anomalous fabric is rotation of the AMS axes by shear within the magma, producing symmetric imbrication of AMS fabric on opposite dyke walls; or more commonly, asymmetric magnetic fabrics, which we relate to tectonic shear at the dyke walls during emplacement. Field support for syn-emplacement shear is given by dyke segmentation geometries including locally curved segment tips, en-echelon arrangements and left/right-stepping displacements. Regionally, syn-emplacement shear is consistent with the observed reactivation during Gondwana breakup of transcrustal shear zones in the Damara mobile belt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call