Abstract
Rechargeable magnesium batteries (RMBs) attract research interest owing to the low cost and high reliability, but the design of cathode materials is the major difficulty of their development. The bivalent magnesium cation suffers from a strong interaction with the anion and is difficult to intercalate into traditional magnesium intercalation cathodes. Herein, an amorphous molybdenum polysulfide (a-MoSx ) is synthesized via a simple one-step solvothermal reaction and used as the cathode material for RMBs. The a-MoSx cathode provides a high capacity (185 mAh g-1 ) and a good rate performance (50 mAh g-1 at 1000 mA g-1 ), which are much superior compared with crystalline MoS2 and demonstrate the privilege of amorphous RMB cathodes. A mechanism study demonstrates both of molybdenum and sulfur undergo redox reactions and contribute to the capacity. Further optimizations indicate low-temperature synthesis would favor the magnesium storage performance of a-MoSx .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.