Abstract

Rechargeable magnesium batteries (RMBs) are a promising large-scale energy-storage technology with low cost and high reliability. However, developing high-performance cathode materials remains the most prominent obstacle because of the insufficient magnesium-storage active sites and unfavorable magnesium cation transport paths, as well as the strong interaction between the cathode material and the bivalent magnesium cation. Herein, ammonium tetrathiomolybdate is demonstrated to be a high-performance RMB cathode material. Ammonium tetrathiomolybdate exhibits a high capacity of 333 mAh g-1 at 50 mA g-1 and a good rate performance of 129 mAh g-1 at 5.0 A g-1 (∼15 C). An amorphous structure with plenty of efficient magnesium-storage active sites and open magnesium transport paths is in situ formed during the first cycle via ammonium extraction. The covalent-like bond between the molybdenum and sulfur delocalizes the negative charge, weakening the interaction with the bivalent magnesium cation and accelerating the kinetics. The covalent-like molybdenum-sulfur bond also promotes the simultaneous redox of molybdenum and sulfur, leading to a high specific capacity. The present work introduces a high-capacity and high-power RMB cathode material, elucidates the origin of the high performance, and provides insights for the design and optimization of RMB cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call