Abstract

Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. In the course of determining the primary structure of link protein, two peptides produced by digestion of rat chondrosarcoma link protein with trypsin or chymotrypsin have been selectively purified by immunoaffinity chromatography on a column of monoclonal anti-link protein antibody (8A4) immobilized to Sepharose 4B. These peptides have been sequenced using the double-coupling dimethylaminoazobenzene isothiocyanate/phenyl isothiocyanate procedure. A consensus sequence, Cys-X-Ala-Gly-Trp-Leu-X-Asp-Gly-Ser-Val-X-Tyr-Pro-Ile-X-X-Pro, obtained by comparing the affinity-isolated tryptic peptide with the affinity-isolated chymotryptic peptide and an overlapping tryptic peptide, shows homology with a sequence obtained from the NH2-terminal of a CNBr peptide from proteo glycan core protein of bovine nasal cartilage: Ser-Ser-Ala-Gly-Trp-Leu-Ala-Asp-Arg-Ser-Val-Arg-Tyr-Pro-Ile-Ser-. We suggest that the common sequence is structurally important to the function of these proteins and may be involved in the binding of both link protein and proteoglycan to hyaluronic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.