Abstract

Ambipolar field-effect transistor (FET) devices based on two-dimensional (2D) materials have been attracted much attention due to potential applications in integrated circuits, flexible electronics and optical sensors. However, it is difficult to tune Fermi level between conduction and valence bands using a traditional SiO2 as dielectric layer. Here, we employed the lithium-ion conductive glass ceramic (LICGC) as the back-gate electrode in a monolayer WS2 FET. The effective accumulation and dissipation of Li+ ions in the interface induce a wide tune of Fermi level in the conducting channel by electron and hole doping, which show an ambipolar transport characteristics with threshold voltages at 0.9 V and −1.3 V, respectively. Our results provide an opportunity for fabricating ultra-thin ambipolar FET based on 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.