Abstract
Two-dimensional (2D) materials, characterized by their atomically thin nature and exceptional properties, hold significant promise for future nano-electronic applications. The precise control of carrier density in these 2D materials is essential for enhancing performance and enabling complex device functionalities. In this study, we present an electron-beam (e-beam) doping approach to achieve controllable carrier doping effects in graphene and MoS2 field-effect transistors (FETs) by leveraging charge-trapping oxide dielectrics. By adding an atomic layer deposition (ALD)-grown Al2O3 dielectric layer on top of the SiO2/Si substrate, we demonstrate that controllable and reversible carrier doping effects can be effectively induced in graphene and MoS2 FETs through e-beam doping. This new device configuration establishes an oxide interface that enhances charge-trapping capabilities, enabling the effective induction of electron and hole doping beyond the SiO2 breakdown limit using high-energy e-beam irradiation. Importantly, these high doping effects exhibit non-volatility and robust stability in both vacuum and air environments for graphene FET devices. This methodology enhances carrier modulation capabilities in 2D materials and holds great potential for advancing the development of scalable 2D nano-devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.