Abstract
A new model of galaxy rotation based on the cyclostrophic model of vortices found in nature is developed. The model is tested using the SPARC dataset of 175 galaxies and a smaller dataset comprising of 60 galaxies. Analysis of the datasets showed that galactic rotation can be adequately described using the observed surface brightness of galaxies and the newly developed cyclostrophic velocity model. The use of the luminosity and the inverse mass-to-light ratio in lieu of the surface brightness, also yield a very good fit of the observed and computed galaxy rotation velocity. Evidently, galactic rotation greatly depends on the cyclostrophic balance of the pressure gradient and the centrifugal forces and the seismic-induced radial expansion occurring in various stars. This is the most probable origin of the action of a single force law that has been overlooked in previous studies. Therefore, the need for a super-massive black hole at the center of galaxies or hidden dark matter can be eliminated. Attractive gravitational force can occur even without a massive black hole at the center of galaxies. There appears to be a pressure gradient force between the center and the outer parts of galaxies that sustains attraction. The cyclostrophic model appears to be the physical basis of the Tully-Fisher relation. Furthermore, the missing mass problem associated with galactic rotation can be attributed to the orbital expansion of celestial objects perturbed by seismic-induced forces. In addition, massive tremors or starquakes may create a domino effect in perturbing nearby stars along the axis of the seismic-induced force and this could result in the formation of elliptical galaxies as the orbits of seismic-perturbed neighboring stars become larger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.