Abstract

Rare-earth (RE) doped silicon-oxide (SiOx) films were prepared by sputtering a combined Si + RE2O3 target with argon ions. The study comprised the neodymium (Nd) and samarium (Sm) rare-earth species and the Si + RE2O3 targets were obtained by partially covering a solid disc of Si with area-defined thin layers of Nd2O3 or Sm2O3 powders. The films were investigated by energy-dispersive x-ray, Raman scattering, optical transmission, and photo-luminescence measurements. According to the experimental results, in the as-deposited form, the films were amorphous and presented RE and oxygen concentrations that scaled with the RE2O3 target area. Additional compositional-structural changes were obtained by thermal annealing the films under a flow of oxygen. Within these changes, one can mention: increase of oxygen concentration, optical bandgap widening, partial Si crystallization, and the development of RE-related light emission. The main aspects associated to the production and structural-optical properties of the films, as determined either by the deposition conditions or by the annealing treatments, are presented and discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call