Abstract

In this work, we developed an alternative calibration method for measuring N2O5 with an iodide adduct mass spectrometer (I-CIMS). In this calibration method, N2O5 is heated and then quantified based on the decrease in the amount of NO due to its reaction with the pyrolysis product (NO3). This alternative calibration method was compared with the commonly used method utilizing NOx analyzers equipped with a photolytic converter, which gauge NO2 reduction as a result of its reaction with O3 to quantify N2O5. It is notable that the two methodologies demonstrate favorable consistency in terms of calibrating N2O5, with a variance of less than 10 %. The alternative calibration method is a more reliable way to quantify N2O5 with CIMS, considering the instability of the NO2 conversion efficiency of photolytic converters in NOx analyzers and the loss of N2O5 in the sampling line. The effects of O3 and relative humidity (RH) on the sensitivity toward N2O5 were further examined. There was minimal perturbation of N2O5 quantification upon exposure to O3 even at high concentrations. The N2O5 sensitivity exhibited a nonlinear dependence on RH as it initially rose and then fell. Besides I(N2O5)-, the collisional interaction between I(H2O)- and N2O5 also forms I(HNO3)-, which may interfere with the accurate quantification of HNO3. As a consequence of the pronounced dependence on humidity, it is advisable to implement humidity correction procedures when conducting measurements of N2O5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call