Abstract

In this work, we present an alternative approach to obtain a solenoidal Lipschitz truncation result in the spirit of D. Breit, L. Diening and M. Fuchs [Solenoidal Lipschitz truncation and applications in fluid mechanics. J. Differ. Equ. 253 (2012), 1910–1942.]. More precisely, the goal of the truncation is to modify a function $u \in W^{1,p}(\mathbb {R}^N;\mathbb {R}^N)$ that satisfies the additional constraint $\operatorname {div} u=0$ , such that its modification $\tilde {u}$ is Lipschitz continuous and divergence-free. This approach is different to the approaches outlined in the aforementioned work and D. Breit, L. Diening and S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 23 (2013), 2671–2700, Section 4] and is able to obtain the rather strong bound on the difference between $u$ and $\tilde {u}$ from the former article. Finally, we outline how the approach pursued in this work may be generalized to closed differential forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call