Abstract

We consider functions u ∈ L∞(L2)∩Lp(W1, p) with 1 < p < ∞ on a time–space domain. Solutions to nonlinear evolutionary PDEs typically belong to these spaces. Many applications require a Lipschitz approximation uλ of u which coincides with u on a large set. For problems arising in fluid mechanics one needs to work with solenoidal (divergence-free) functions. Thus, we construct a Lipschitz approximation, which is also solenoidal. As an application we revise the existence proof for non-stationary generalized Newtonian fluids of Diening, Ruzicka and Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010) 1–46. Since div uλ = 0, we are able to work in the pressure free formulation, which heavily simplifies the proof. We also provide a simplified approach to the stationary solenoidal Lipschitz truncation of Breit, Diening and Fuchs, Solenoidal Lipschitz truncation and applications in fluid mechanics, J. Differential Equations253 (2012) 1910–1942.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call