Abstract

The sigma subunit of bacterial RNA polymerase is strictly required for promoter recognition. The primary (housekeeping) sigma factor of Escherichia coli, sigma(70), is responsible for most of the gene expression in exponentially growing cells. The fact that sigma(70) is an essential protein has complicated efforts to genetically dissect the functions of sigma(70). To facilitate the analysis of sigma(70) function in vivo, we isolated an altered-specificity DNA-binding mutant of sigma(70), sigma(70) R584A, which preferentially recognizes a mutant promoter that is not efficiently recognized by wild-type sigma(70). Exploiting this sigma(70) mutant as a genetic tool, we establish an in vivo assay for the inhibitory effect of the bacteriophage T4-encoded anti-sigma factor AsiA on sigma(70)-dependent transcription. Our results demonstrate the utility of this altered-specificity system for genetically dissecting sigma(70) and its interactions with transcription regulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.