Abstract

Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules found in the family Solanaceae. SGA content varies among different plant species and varieties. However, the genetic mechanisms regulating SGA content remain unclear. Here, we demonstrate that genetic variation in GLYCOALKALOID METABOLISM 9 (GAME9) is responsible for the variation in SGA content in tomato (Solanum lycopersicum). During a sequential analysis we found a 1 bp substitution in the AP2/ERF binding domain of GAME9. The 1 bp substitution in GAME9 was significantly associated with high SGA content and determined the binding capacity of GAME9 with the promoter of GAME17, a core SGA biosynthesis gene. The high-SGA GAME9 allele is mainly present in S. pimpinellifolium and S. lycopersicum var. cerasiforme populations and encodes a protein that can bind the GAME17 promoter. In contrast, the low-SGA GAME9 allele is mainly present in the big-fruited varieties of S. lycopersicum and encodes a protein that shows weak binding to the GAME17 promoter. Our findings provide new insight into the regulation of SGA biosynthesis and the factors that affect the accumulation of SGA in tomato.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call