Abstract

Steroidal glycoalkaloids (SGAs) are secondary metabolites being part of the plant defense response. The two major SGAs in cultivated potato (Solanum tuberosum) are α-chaconine and α-solanine, which exhibit strong cellular lytic properties and inhibit acetylcholinesterase activity, and are poisonous at high concentrations for humans. As SGAs are not destroyed during cooking and frying commercial cultivars have been bred to contain low levels, and their content in tubers should not exceed 20 mg/100 g fresh weight. However, environmental factors can increase tuber SGA content above the safe level. The focus of the proposed research was to apply genomic approaches to identify candidate genes that control potato SGA content in order to develop tools for potato improvement by marker-assisted selection and/or transgenic approaches. To this end, the objectives of the proposal included identification of genes, metabolic intermediates and allelic variations in the potato SGAbiosynthetic pathway. The SGAs are biosynthesized by the sterol branch of the mevalonic acid/isoprenoid pathway. Transgenic potato plants that overexpress 3-hydroxy-3-methylglutaryl-CoA reductase 1 (HMG1) or squalene synthase 1 (SQS1), key enzymes of the mevalonic acid/isoprenoid pathway, exhibited elevated levels of solanine and chaconine as well as induced expression of genes downstream the pathway. These results suggest of coordinated regulation of isoprenoid (primary) metabolism and SGA secondary metabolism. The transgenic plants were further used to identify new SGA-related candidate genes by cDNA-AFLP approach and a novel glycosyltransferase was isolated. In addition, genes involved in phytosterol biosynthesis may have dual role and synthesize defense-related steroidal metabolites, such as SGAs, via lanosterol pathway. Potato lanosterol synthase sequence (LAS) was isolated and used to prepare transgenic plants with overexpressing and silencing constructs. Plants are currently being analyzed for SGA content. The dynamics of SGA accumulation in the various organs of a potato species with high SGA content gave insights into the general regulation of SGA abundance. Leaf SGA levels in S. chacoense were 10 to 20-fold greater than those of S. tuberosum. The leptines, SGAs with strong antifeedant properties against Colorado potato beetles, were present in all aerial tissues except for early and mid-developmental stages of above ground stolons, and accounted for the high SGA content of S. chacoense. These results indicate the presence of regulatory mechanisms in most tissues except in stolons that limit the levels of α-solanine and α-chaconine and confine leptine accumulation to the aerial tissues. The genomes of cultivated and wild potato contain a 4-member gene family coding for SQS. Three orthologs were cloned as cDNAs from S. chacoense and heterologously expressed in E. coli. Squalene accumulated in all E. coli lines transformed with each of the three gene constructs. Differential transcript abundance in various organs and amino acid sequence differences in the conserved domains of three isoenzymes indicate subfunctionalization of SQS activity and triterpene/sterol metabolism. Because S. chacoense and S. phureja differ so greatly for presence and accumulation of SGAs, we selected four candidate genes from different points along the biosynthetic pathway to determine if chcor phuspecific alleles were associated with SGA expression in a segregating interspecific diploid population. For two of the four genes (HMG2 and SGT2) F2 plants with chcalleles expressed significantly greater total SGAs compared with heterozygotes and those with phualleles. Although there are other determinants of SGA biosynthesis and composition in potato, the ability of allelic states at two genes to affect SGA levels confirms some of the above transgenic work where chcalleles at two other loci altered SGA expression in Desiree. Present results reveal new opportunities to manipulate triterpene/sterol biosynthesis in more targeted ways with the objective of altering SGA content for both human health concerns and natural pesticide content without disrupting the essential metabolism and function of the phytosterol component of the membranes and the growth regulating brassinosteroids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call