Abstract

Macroporous TiO₂ (anatase) thin films are fabricated by an all low-temperature process in which substrates are dip-coated in suspensions of mixed anatase nanoparticles and polystyrene beads, and the templating agents are removed by ultraviolet (UV) irradiation at a temperature below 50 °C. Scanning electron microscopy (SEM) and Raman spectroscopy show that the templating polymer beads are removed by UV irradiation combined with the photocatalytic activity of TiO₂. X-Ray diffraction reveals that nanoparticle growth is negligible in UV irradiated films, while nanoparticle size increases by almost 10 times in calcined films that are prepared for comparison. The macroporous films are prepared on FTO-(fluorine-doped tin oxide) coated glass and ITO (indium tin oxide) coated flexible plastics and thereby used as working electrodes. In both cases, the films are electrochemically addressable, and cyclic voltammetry is consistent with the response of bulk TiO₂ for calcined films and of nanoscale-TiO₂ for UV-irradiated films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.