Abstract
This paper reports calculated energies and electronic structures of O(2p), O(2s) and Al(2p) excited states in bulk -Al2O3, at the and surfaces and in the presence of O vacancy defects, obtained from all-electron HF, B3LYP, GGA and LDA calculations based on a recently described direct -SCF approach (Mackrodt et al 2018 J. Phys.: Condens. Matter 30 495901). The closely related frequency-dependent optical constants derived from B3LYP calculations within the CPHF/DF framework are also reported, where both sets of results are shown to compare favourably with the experimental spectra. The differences between the directly calculated excited state energies, which in -Al2O3 are equal to the leading excitation edges, based on the four functionals, are substantially less than the differences between the corresponding (ground state) band gaps, as reported previously for AFII NiO (Mackrodt et al 2018 J. Phys.: Condens. Matter 30 495901). For the B3LYP functional, these energies are 8.7 eV, 12.5 eV and 73.7 eV for the O(2p), O(2s) and Al(2p) excitations respectively. The O(2p) edge is predicted to be degenerate, with distinct excitations from O(2p) states that are parallel to and perpendicular to the c-axis, in agreement with the reported spectra (Tomiki et al 1993 J. Phys. Soc. Japan 62 573). Detailed analyses of the charge and spin distributions in the four bulk excited states indicate that these are essentially charge-transfer excitonic, with acceptor sites at the nearest neighbour positions. Despite the close proximity of the O() and O(2p) excited state energies, the charge and spin distributions are predicted to be quite different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.