Abstract
AbstractIn this paper we examine an integer programming formulation of the resource constrained shortest path problem. This is the problem of a traveller with a budget of various resources who has to reach a given destination as quickly as possible within the resource constraints imposed by his budget. A lagrangean relaxation of the integer programming formulation of the problem into a minimum cost network flow problem (which in certain circumstances reduces to an unconstrained shortest path problem) is developed which provides a lower bound for use in a tree search procedure. Problem reduction tests based on both the original problem and this lagrangean relaxation are given. Computational results are presented for the solution of problems involving up to 500 vertices, 5000 arcs, and 10 resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.