Abstract
The estimation and separation of ephemeris and clock errors is an integral part of a SBAS (Space Based Augmentation System). Generally, the global solution is based on the full state approach for satellite errors (ephemeris and clock) and station errors, using a large least square estimator; or the other way is to sequentially estimate the ephemeris and clock through a Kalman filter, using a complex model of the satellite dynamics. In this paper, the estimation and separation of ephemeris and clock errors is addressed through a unique approach of combining both the methods. The algorithm employs measurements, which are pre-processed for various errors and known biases. A single difference technique is used to separately estimate the ephemeris and clock components. The ephemeris Kalman filter uses a priori information of ephemeris errors along with measurements through a minimum variance estimator to provide ephemeris error estimate. A similar approach is adopted in the clock error estimation process, to provide clock and clock rate estimates. The algorithm results are presented using simulated data for known errors in ephemeris/clock and subsequent retrieval. This algorithm estimates these errors as corrections to the broadcast Global Positioning System (GPS) navigation data, required by a SBAS user for accuracy improvement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have