Abstract
In recent years, surface defect detection methods based on deep learning have been widely applied to steel plate surface defect detection. By locating and classifying defects on the surface of steel plates, production efficiency can be improved. However, there is still a conflict between speed and accuracy in the defect detection process. To address this issue, we propose a high-precision, low-latency surface defect detection algorithm called the GhostConv-ECA-YOLOv5 Network (GEA-Net). The GEA-Net model can predict defect categories without compromising classification and detection accuracy. Experimental results show that our proposed improved model has higher performance compared to other comparative models, achieving a 75.6% mAP on the NEU-DET dataset.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have