Abstract
Typical testors are useful tools for feature selection and for determining feature relevance in supervised classification problems. Nowadays, computing all typical testors of a training matrix is very expensive; all reported algorithms have exponential complexity depending on the number of columns in the matrix. In this paper, we introduce the faster algorithm BR (Boolean Recursive), called fast-BR algorithm, that is based on elimination of gaps and reduction of columns. Fast-BR algorithm is designed to generate all typical testors from a training matrix, requiring a reduced number of operations. Experimental results using this fast implementation and the comparison with other state-of-the-art related algorithms that generate typical testors are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.