Abstract

Typical testors are a useful tool for both feature selection and for determining feature relevance in supervised classication problems. Nowadays, generating all typical testors of a training matrix is computationally expensive; all reported algorithms have exponential complexity, depending mainly on the number of columns in the training matrix. For this reason, different approaches such as sequential and parallel algorithms, genetic algorithms and hardware implementations techniques have been developed. In this paper, we introduce a fast implementation of the algorithm CT_EXT (which is one of the fastest algorithms reported) based on an accumulative binary tuple, developed for generating all typical testors of a training matrix. The accumulative binary tuple implemented in the CT_EXT algorithm, is a useful way to simplifies the search of feature combinations which fulfill the testor property, because its implementation decreases the number of operations involved in the process of generating all typical testors. In addition, experimental results using the proposed fast implementation of the CT_EXT algorithm and the comparison with other state of the art algorithms that generated typical testors are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.