Abstract
Biocatalytic production of lactones, and in particular ϵ-caprolactone (CL), have gained increasing interest as a greener route to polymer building blocks, especially through the use of Baeyer-Villiger monooxygenases (BVMOs). Despite several advances in the field, BVMOs, however, still suffer several practical limitations. Alcohol dehydrogenase (ADH)-mediated lactonization of diols in turn has received far less attention and very few enzymes have been identified for the conversion of diols to lactones, with horse-liver ADH (HLADH) remaining the catalyst of choice. Screening of a diverse panel of ADHs, AaSDR-1, a member of the short-chain dehydrogenase/reductase family, was found to produce ϵ-caprolactone from hexane-1,6-diol. Moreover, cofactor regeneration by an NADH oxidase eliminated the requirement of co-substrates, yielding water as the sole by-product. Despite lower turnover frequencies as compared to HLADH, higher selectivity was found for the production of CL, with HLADH forming significant amounts of 6-hydroxyhexanoic acid and adipic acid through aldehyde dehydrogenation/oxidation of the gem-diol intermediates. Also, CL yield were shown to be dependent on buffer choice, as structural elucidation of a Tris adduct confirmed the buffer amine to react with aliphatic aldehydes forming a Schiff-base intermediate which through further ADH oxidation, forms a tricyclic acetal product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.