Abstract

The metal-directed alkylating agent DL-alpha-bromo-beta-(5- imidazolyl)propionic acid (BrImPpOH) is shown to be an affinity-labelling reagent for sheep liver sorbitol dehydrogenase (SDH). As previously found for horse liver alcohol dehydrogenase (ADH), it modifies a cysteine ligand to the active-site zinc. In this case it is selectively incorporated (over 90%) at Cys43 in each of the four polypeptide chains/protomers of sheep liver SDH. Incorporated reagent and residual activity correlated. The first order inactivation constant, K2, and KEI, the dissociation constant for SDH and BrImPpOH, have been determined at different pH. The reactivity of BrImPpOH for SDH is higher than that for horse liver and yeast ADH. The protection of SDH against BrImPpOH inactivation by buffers and other molecules shows some similarities to that with horse liver ADH. However, sheep liver SDH bound BrImPpOH, imidazole and phosphate ions much weaker than liver ADH. The pKa values from the plot of log (k2/KEI) against pH are approximately 7.0 and 8.8-8.9. The former pKa value probably represents ionization of an imidazole group and the latter the zinc/water ionization in SDH. These pKa values are similar to those found for horse liver ADH. They are apparently not noticeably influenced by a second cysteine ligand in liver ADH being replaced by a proposed glutamic acid residue as a ligand to the catalytic zinc in SDH. The plot of logk2 against pH shows pKa values around 7.0 and 9.2 for the SDH-BrImPpOH-complex. The pKa of 7.0 is the same as for log(k2/KEI), and indicates no significant perturbation due to the binding of BrImPpOH to SDH. The pKa around 9.2 indicates perturbation of the zinc/water ionization or the ionization of Cys43.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call