Abstract

Metamaterial absorbers are typically comprised of a layer of split-ring resonators and a ground plane with a dielectric spacer layer that provides structural support and in which absorbed energy is deposited. We address the question “What happens to the absorption if the spacer layer is removed?” through the design, fabrication, and characterization of a terahertz metamaterial absorber with air as the spacer layer. Reflection based terahertz time-domain spectroscopy was employed to measure the absorption and interference theory was used to interpret the results. The surface current in the gold ground plane and split-ring resonator layer is solely responsible for the absorption in the form of joule heating. In comparison to dielectric spacer layer absorbers, the quality factor is increased by a factor of ∼3. The electric field is highly concentrated in the volume between split-ring resonator layer and the ground plane offering the potential for novel sensing application if materials can be incorporated into this region (e.g. with microfluidics). In the spirit of this possibility, simulations of the absorption have been performed. The variation of the real part of the permittivity of the spacer material results in an absorption peak frequency shift, while a change in the imaginary part affects the quality factor and amplitude. Ultimately, the high quality factor and the absence of the spacer material provide the air-spacer metamaterial absorber with unique advantages for sensing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.