Abstract
An air-stable photovoltaic device based on znic oxide nanoparticles (ZNP) in an inverted structure of indium tin oxide (ITO)/ZnO/poly (3-hexylthiophene) (P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PCBM)/MoO3/Ag is studied. We find that the optimum thickness of the MoO3 layer is 2 nm. When the MoO3 blocking layer is introduced, the fill factor of the devices is increased from 29% to 40%, the power conversion efficiency is directly promoted from 0.35% to 1.27%. The stability under ambient conditions of this inverted structure device much is better due to the improved stability at the polymer/Ag interface. The enhancement is attributed to the high carriers mobility and suitable band gap of MoO3 layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.