Abstract

Alkenes are known to undergo oxidation to radical cations and dications. The radical cations are often highly reactive and not stable under air. Herein, we report the synthesis, isolation, characterization, and molecular structure of an alkene-derived radical cation A, which is stable in air both in the solid state and in solution. The access to this compound was facilitated from E-diamino tri-substituted alkene B as a synthon for the synthesis of A through one-electron oxidation. The E-diamino tri-substituted alkene B was synthesized by the two-electron reduction of N,N′-1,2-propylene-bridged bis-2-phenyl-pyrrolinium cation C. Under two-electron oxidation, alkene B transforms back to cation C involving a double carbocation rearrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.