Abstract

Mathematical and computational models are of great help to study and predict phenomena associated with cancer growth and development. These models may lead to introduce new therapies or improve current treatments by discovering facts that may not be easily discovered in clinical experiments. Here, a new two-dimensional (2D) stochastic agent-based model is presented for the spatiotemporal study of avascular tumor growth based on the effect of the immune system. The simple decision-making rules of updating the states of each agent depend not only on its intrinsic properties but also on its environment. Tumor cells can interact with both normal and immune cells in their Moore neighborhood. The effect of hypoxia has been checked off by considering non-mutant proliferative tumor cells beside mutant ones. The recruitment of immune cells after facing a mass of tumor is also considered. Results of the simulations are presented before and after the appearance of immune cells in the studied tissue. The growth fraction and necrotic fraction are used as output parameters along with a 2D graphical growth presentation. Finally, the effect of input parameters on the output parameters generated by the model is discussed. The model is then validated by an in vivo study published in medical articles. The results show a multi-spherical tumor growth before the immune system strongly involved in competition with tumor cells. Besides, considering the immune system in the model shows more compatibility with biological facts. The effect of the microenvironment on the proliferation of cancer and immune cells is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.