Abstract

The nanostructural response of New Zealand white rabbit Achilles tendons to a fatigue damage model was assessed quantitatively and qualitatively using the endpoint of dose assessments of each tendon from our previous study. The change in mechanical properties was assessed concurrently with nanostructural change in the same non-viable intact tendon. Atomic force microscopy was used to study the elongation of D-periodicities, and the changes were compared both within the same fibril bundle and between fibril bundles. D-periodicities increased due to both increased strain and increasing numbers of fatigue cycles. Although no significant difference in D-periodicity lengthening was found between fibril bundles, the lengthening of D-periodicity correlated strongly with the overall tendon mechanical changes. The accurate quantification of fibril elongation in response to macroscopic applied strain assisted in assessing the complex structure-function relationship in Achilles tendons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.