Abstract

Achilles tendons are vulnerable to acute or chronic injuries that lead to inflammation. We investigated nanostructural and nanomechanical changes in collagen fibrils from rat Achilles tendons over a period of 9 weeks after injury using atomic force microscopy (AFM). To evaluate the nanostructural changes in Achilles tendons, we measured the diameter and D-banding of collagen fibrils by AFM. And the adhesion forces, which were related to cross-linking of collagen, were calculated from the retraction process of a force-distance curve. We successfully observed the time course of changes in collagen fibrils during healing using AFM. The diameters and D-banding in healed tendons were similar to those of uninjured tendons at 9 weeks after injury, but the adhesion forces remained different from those of uninjured tendons. Our AFM results depicted the minute changes in Achilles tendon surface by natural healing quite well, even drawbacks to naturally healed tendon. Understanding changes in collagen cross-linking and structure while healing will lead to better understanding of healing mechanisms and subsequent improvements in treatment. And AFM can be applied as powerful tool to evaluate structural and property changes in collagen fibrils before and after injury and/or treatment in Achilles tendon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call