Abstract
In this study the effect of cholesterol in Langmuir−Blodgett monolayers of fatty acids of varying chain lengths was investigated by atomic force microscopy (AFM). Domain formation due to lateral phase separation was studied at different lipid compositions and surface pressures. A small amount of cholesterol is miscible with palmitic acid (C16:0) and forms a flat monolayer while excess cholesterol forms a rougher cholesterol-rich phase. No miscibility was observed in monolayers of lignoceric acid (C24:0) and cholesterol. For the ternary mixed monolayer (palmitic acid, lignoceric acid, and cholesterol) the two fatty acids formed separate domains and the miscibility of cholesterol in the two phases showed behavior corresponding to that of the binary fatty acid−cholesterol systems. From the shape, size, and height differences of the domains one can conclude that the driving force to minimize the interfacial length between different phases is reduced in the presence of cholesterol. This can be attributed to line active properties of cholesterol.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have