Abstract
AbstractThe author presents a multivariate location model for cluster correlated observations. He proposes an affine‐invariant multivariate sign statistic for testing the value of the location parameter. His statistic is an adaptation of that proposed by Randles (2000). The author shows, under very mild conditions, that his test statistic is asymptotically distributed as a chi‐squared random variable under the null hypothesis. In particular, the test can be used for skewed populations. In the context of a general multivariate normal model, the author obtains values of his test's Pitman asymptotic efficiency relative to another test based on the overall average. He shows that there is an improvement in the relative performance of the new test as soon as intra‐cluster correlation is present Even in the univariate case, the new test can be very competitive for Gaussian data. Furthermore, the statistic is easy to compute, even for large dimensional data. The author shows through simulations that his test performs well compared to the average‐based test. He illustrates its use with real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.