Abstract

Efficient utilization of light in photocatalytic chemical processes requires careful optimization of the photocatalytic reactor layout to maximize the interaction between the incident light, photocatalyst and reactant molecules. Herein, we report a new type of photocatalytic flow microreactor with an integrated light guide, formed by a channel fabricated inside a hydrophobic composite aerogel monolith made of silica and titania (TiO2). The liquid-filled channel simultaneously acts as a reaction vessel and as a liquid-core optofluidic waveguide, distributing the incident light over the whole reaction volume. Anatase TiO2 nanoparticles embedded in the channel walls then serve as a photocatalyst that can efficiently interact with both the guided light and the reactant solution along the channel length. Composite aerogels were synthesized with TiO2 content between 1 and 50 wt %, retaining their interconnected mesoporous network, low refractive index, and waveguide propagation losses below −3.9 dB/cm over this range of compositions. Using photocatalytic degradation of phenol – an organic compound with harmful environmental effects – as a model chemical reaction, the performance of the microreactor was systematically investigated. Reactant conversion was observed to increase with increasing incident light power, decreasing reactant flow rate and increasing mass fraction of TiO2 in the composite. An analytical model of the reactor/light guide system was developed that predicted successfully the scaling of the reactant conversion with the incident light power and reactant flow rate. The presented concept of aerogel-based optofluidic photocatalytic microreactors is readily scalable and possesses great potential for carrying out other photocatalytic reactions in both polar and non-polar solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.