Abstract
As the complexity of software is increasing, generating an effective test data has become a necessity. This necessity has increased the demand for techniques that can generate test data effectively. This paper proposes a test data generation technique based on adequacy based testing criteria. Adequacy based testing criteria uses the concept of mutation analysis to check the adequacy of test data. In general, mutation analysis is applied after the test data is generated. But, in this work, we propose a technique that applies mutation analysis at the time of test data generation only, rather than applying it after the test data has been generated. This saves significant amount of time (required to generate adequate test cases) as compared to the latter case as the total time in the latter case is the sum of the time to generate test data and the time to apply mutation analysis to the generated test data. We also use genetic algorithms that explore the complete domain of the program to provide near-global optimum solution. In this paper, we first define and explain the proposed technique. Then we validate the proposed technique using ten real time programs. The proposed technique is compared with path testing technique (that use reliability based testing criteria) for these ten programs. The results show that the adequacy based proposed technique is better than the reliability based path testing technique and there is a significant reduce in number of generated test cases and time taken to generate test cases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have