Abstract
AbstractIn this paper, we propose a two-level additive Schwarz domain decomposition preconditioner for the symmetric interior penalty Galerkin method for a second-order elliptic boundary value problem with highly heterogeneous coefficients. A specific feature of this preconditioner is that it is based on adaptively enriching its coarse space with functions created by solving generalized eigenvalue problems on thin patches covering the subdomain interfaces. It is shown that the condition number of the underlined preconditioned system is independent of the contrast if an adequate number of functions are used to enrich the coarse space. Numerical results are provided to confirm this claim.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.